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Supplemental Figure S1	
(A) Original scans of blots shown in Fig. 1B. 	
(B) Timecourse of fb-TOR activity in response to starvation alone or starvation with CO2 
anesthesia. Inhibition of larval body movement by CO2 anesthesia during starvation resulted in a 
more rapid loss of fb-TOR activity compared to starvation of motile larvae.	
(C) Fb-TOR activity requires nutation both at room temperature (RT) and 4 °C during ex vivo 
incubation of larval carcasses.	
(D) Ok6-Gal4 (Control) and Ok6-Gal4>UAS-ChR2-XXL larvae were cultured for 15 minutes under 
blue light (Blue) to inhibit larval movement or no-light control (No). Optogenetic paralysis caused a 
loss of fb-TOR activity, which was restored by removal of the blue light for an additional 15 min.	
(E) Fb-TOR activity was lost within 15 min of incubation ex vivo in the absence of nutation or 
insulin.	
(F) The levels of phosphorylated 4EBP and S6K showed a similar requirement for nutation during 
ex vivo incubation in M3 media + insulin.	
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Supplemental Figure S2	
(A) Measurement of heartbeat (Hz) of crawling larvae (Control, n=18) or larvae immobilized by glue 
(n=10), temperature shift-induced motor neuron inhibition (Ok6>ShiTS, n=18) or blue light-induced 
motor neuron inhibition (Ok6>ChR2XXL, n=4).	
(B) Normalized ratio between Ubi::ODD-GFP and Ubi::RFP as shown in Fig. 2C-F. Normoxia in 
vivo n=13, anoxia in vivo n=17, ex vivo incubation with nutation n=13, and ex vivo without nutation 
n=16. ***p<0.001, student t-test.	
(C) Normalized ratio between Ubi::ODD-GFP and Ubi::RFP in larvae paralyzed in vivo by 4 °C 
treatment (n=12) or CO2 gas (n=14) for 15 min. Control n=12.	
(D) Western blot of P-AMPK of fat body extracts from immobilized larvae as shown in Fig 1.B, C 
and Supplementary Fig. 1D.	
(E) Fb-TOR activity of isolated fat body or body wall muscle displayed similar requirement for 
nutation during ex vivo incubation. 
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Supplemental Figure S3	
(A-C) Localization of InR-CFP (A), Chico-RFP (B), or Lnk-RFP (C) in the fat body from larvae with 
normal crawling movement. Scale bar: 20 um.	
(D) The protein levels of InR-CFP, Chico-RFP, Lnk-RFP and GFP-PH were measured by 
immunoblot after 2-hr ex vivo incubation in M3 + insulin media with or without mechanical stress.	
(E) Normalized membrane signal intensity for the fluorescent markers shown in Figure 3A-H. A 
n=35, B n=40, C n=40, D n=50, E n=35, F n=30, G n=35, and H n=65. ***p<0.001, student t-test.	
(F) Protein levels of InR-CFP under different body movement conditions shown in Figure 3I-K. 	
(G) Normalized membrane signal intensity of InR-CFP as shown in Figure 3I-K. I n=50, J n=40, and 
K n=45. ***p<0.001, student t-test.	
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Supplemental Figure S4	
(A) RNAi-mediated depletion of TRP channels (TRPM, TRPA, TRPN, or TRPV) did not affect fb-
TOR in M3 media in the presence of insulin and nutation.	
(B) Addition of EDTA (15, 30, and 60 mM) in the media inhibited fb-TOR dose-dependently with 
better efficiency compared to EGTA (15, 30, and 60 mM). 	
(C) Incubation in PBS containing 10 mM MgCl2 or MnCl2 but not CaCl2 allowed activation of fb-
TOR in the presence of insulin and nutation. 	
(D) CaCl2 (10mM) antagonized MgSO4 (10mM)-dependent activation of fb-TOR in PBS + insulin.	
(E) Localization of Collagen IV (Vkg)-GFP around the periphery of larval fat body cells. Scale bar: 
20 um.	
(F, G) Integrin β staining in fat body from moving larvae (Ok6-GAL4, incubated at 37 °C for 30 min) 
(F) or larvae immobilized by motor neuron inhibition (Ok6-GAL4 UAS-ShiTS, incubated at 37 °C for 
30 min) (G). Scale bar: 20 um.	
(H) Fat body protein levels of InR-CFP, Integrin β, and Talin-mCh are unaffected by nutation. 
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Supplemental Figure S5	
(A) Addition of collagenase (10 and 50 ug/mL) in the M3 + insulin media ex vivo abolished 
mechanical stress-dependent fb-TOR activity.	
(B) Depletion of collagen IV alpha 1 (CG25C) or collagen IV alpha 2 (Vkg) using hs-Gal4 
decreased fb-TOR activity.	
(C-D) Additional representative images contributing to the data shown in Figs. 5D and 5E.	
(E) Quantification of four independent western blots as shown in Fig. 5F. * P<0.05, ***p<0.001, 
student t-test.	
(F) Ex vivo fb-TOR activity was partially maintained in the absence of nutation in fat body 
expressing the integrin activator RIAM30-CAAX.	
(G) RNAi-mediated depletion of integrin alpha PS1-4 (mew, if, scb, and ItgaPS4), integrin beta-N 
(βν), Ilk, or Fak did not affect fb-TOR activity in the presence of insulin and nutation. 
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Supplemental Figure S6	
(A) Normalized membrane signal intensity of InR-CFP in response to 29 °C inactivation of Integrin 
β (mysts1), as shown in Figure 5G (n=55) and 5H (n=55). ***p<0.001, student t-test.	
(B) The protein level of InR-CFP in the fat body of mysts1, Cg>InR-CFP flies was not changed by 
temperature shift.	
(C-D) Integrin β and InR-CFP remain localized to the cell membrane in the fat body of control 
Cg>InR-CFP flies after ex vivo incubation at permissive (C) or restrictive temperatures (D) in the 
presence of insulin and nutation. Scale bar: 20 um.	
(E-J) Membrane localization of Chico-RFP, Lnk-RFP, and GFP-PH in the mysts1 background at RT 
(E-G) or 29 °C (H-J). Scale bar: 20 um. 
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Supplemental Movie S1.  Video of 3rd instar larva at room temperature. Crawling motion results in 

extensive undulating movement of the larval fat body, which is highlighted using Cg-GAL4 UAS-

GFP.  	

 	

Supplemental Movie S2.  Video of 3rd instar larva after 15 minutes at 4 °C. Note the abolishment 

of crawling motion, and continued beating of the larval heart. Larval fat body is highlighted using 

Cg-GAL4 UAS-GFP.  	



Supplementary Table 1.   Drosophila melanogaster strains used in this study 

Drosophila line Reference Source 

Act5c>CD2>GAL4[S] [1] Bloomington Drosophila Stock Center (BDSC) 
Cg-GAL4.A2 [2] BDSC 
Hsp70-GAL4 [2-1] [3] BDSC 
OK6-GAL4  [4] BDSC 
UAS-chico-RFP  [5] gift of H. Stocker 
UAS-Lnk-RFP [5] gift of H. Stocker 
UAS-InR-CFP [5] gift of H. Stocker 
Ubi-TalinE1777A-GFP [6] gift of G. Tanentzapf 
UAS-mCh-RIAM30-RAP1[CAAX] [6] gift of G. Tanentzapf 
UAS-WT-Dp110 [7] BDSC 
UAS-Rheb [EP50.084] [8] gift of E. Hafen 
UAS-shits1K3 
UAS-ChR2-XXL 
 
Ubi::ODD-GFP 

[9] 
[10] 
[11] 

BDSC 
BDSC 
 
Gift of S. Luschnig 

mys[ts1] [12] BDSC 
tGPH[2] [13] BDSC 
Vkg::GFP [G00205] [14] Gift of L. Cooley 
Talin (rhea)-mCherry [MI00296] [15] BDSC 
UAS-Talin (rhea) RNAi [TRiP.HMS00856] [16] BDSC 
UAS-Integrin beta (mys) RNAi 
[TRiP.HMS00043] 

[16] BDSC 

UAS-Integrin alpha PS1 (mew) RNAi 
[TRiP.HMS02849] 

[16] BDSC 

UAS-Integrin alpha PS2 (if) RNAi 
[TRiP.JF02695] 

[16] BDSC 

UAS-Integrin alpha PS3 (scb) RNAi 
[TRiP.HMS01873] 

[16] BDSC 

UAS-ItgaPS4 RNAi [TRiP.HMC02928] [16] BDSC 
UAS-Itgbn RNAi [TRiP.HM05089] [17] BDSC 
UAS-Ilk RNAi [TRiP.HMS04509] [16] BDSC 
UAS-Fak RNAi [TRiP.HMS00010] [16] BDSC 
UAS-TRPM RNAi #1 [TRiP.HMC03236]  [16] BDSC 
UAS-TRPM RNAi #2 [TRiP.JF01236] [17] BDSC 
UAS-TRPA (pain) RNAi [TRiP.JF01065] [17] BDSC 
UAS-TRPN (nompC) RNAi [TRiP.JF01067] [17] BDSC 
UAS-TRPV (iav) RNAi [TRiP.JF01904] [17] BDSC 
UAS-vkg RNAi {KK111668}VIE-260B 
UAS-Col4a1 RNAi [TRiP. HMC02910] 

[18] 
[19] 

Vienna Drosophila RNAi Center 
BDSC 
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